हिंदी

What is the conjugate of 2-i(1-2i)2? - Mathematics

Advertisements
Advertisements

प्रश्न

What is the conjugate of `(2 - i)/(1 - 2i)^2`?

योग

उत्तर

Given that z = `(2 - i)/(1 - 2i)^2`

= `(2 - i)/(1 + 4i^2 - 4i)`

= `(2 - i)/(1 - 4 - 4i)`

= `(2 - i)/(-3 - 4i)`

= `(2 - i)/(-3 - 4i) xx (-3 + 4i)/(-3 + 4i)`

= `(-6 + 8i + 3i - 4i^2)/((-3)^2 - (4i)^2)`

= `(-6 + 11i + 4)/(9 - 16i^2)`

= `(-2 + 11i)/(9 + 16)`

= `(-2 + 11i)/25`

= `(-2)/25 + 11/25 i`

∴ `barz = (-2)/25 - 11/25 i`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 28 | पृष्ठ ९४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


Solve the equation `z^2 = barz`, where z = x + iy.


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


Solve the system of equations Re(z2) = 0, z = 2.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×