English

If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that |z1-z2|=|z1|-|z2|. - Mathematics

Advertisements
Advertisements

Question

If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.

Sum

Solution

Given that for z1 and z2, arg (z1) – arg (z2) = 0.

Let us represent z1 and z2 in polar form.

z1 = r1(cosθ1 + isin θ1) and z2 = r2(cosθ2 + isin θ2)

arg(z1) = θ1 and arg(z2) = θ2

Since arg(z1) – arg(z2) = 0

⇒ θ1 – θ2 = 0

⇒ θ1 = θ2 

Now z1 – z2 = r1(cosθ1 + isinθ1) – r2(cosθ2 + isin θ2)

= r1cosθ1 + ir1sinθ1 – r2cosθ1 – ir2sin θ1   .....`[because theta_1 = theta_2]`

= (r1cosθ1 – r2cosθ1) + i(r1sinθ1 – r2sinθ1)

∴ |z1 – z2| = `sqrt((r_1 costheta_1 - r_2 cos theta_1)^2 + (r_1 sintheta_1 - r_2 sin theta_1)^2`

= `sqrt((r_1^2 cos^2 theta_1 + r_2^2 cos^2 theta_1 - 2r_1r_2 cos^2 theta_1 + r_1^2 sin^2 theta_1 + r_2^2 sin^2 theta_1 - 2r_1r_2 sin^2 theta_1))`

= `sqrt(r_1^2 (cos^2 theta_1 + sin^2 theta_1) + r_2^2 (cos^2 theta_1 + sin^2 theta_1) - 2r_1 r_2 (cos^2 theta_1 + sin^2 theta_1))`

= `sqrt(r_1^2 + r_2^2 - 2r_1r_2)`

= `sqrt((r_1 - r_2)^2`

= r1 – r2

= |z1| – |z2|

Hence, |z1| – |z2| = |z1| – |z2|.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 92]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 20 | Page 92

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form: –3


Convert the given complex number in polar form `sqrt3 + i`


Convert the given complex number in polar form: i


Convert the following in the polar form:

`(1+7i)/(2-i)^2`


Convert the following in the polar form:

`(1+3i)/(1-2i)`


Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).


Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.


The locus of z satisfying arg(z) = `pi/3` is ______.


What is the polar form of the complex number (i25)3?


Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


arg(z) + arg`barz  (barz ≠ 0)` is ______.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


Find principal argument of `(1 + i sqrt(3))^2`.


|z1 + z2| = |z1| + |z2| is possible if ______.


The value of arg (x) when x < 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×