Advertisements
Advertisements
Question
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
Solution
Given that for z1 and z2, arg (z1) – arg (z2) = 0.
Let us represent z1 and z2 in polar form.
z1 = r1(cosθ1 + isin θ1) and z2 = r2(cosθ2 + isin θ2)
arg(z1) = θ1 and arg(z2) = θ2
Since arg(z1) – arg(z2) = 0
⇒ θ1 – θ2 = 0
⇒ θ1 = θ2
Now z1 – z2 = r1(cosθ1 + isinθ1) – r2(cosθ2 + isin θ2)
= r1cosθ1 + ir1sinθ1 – r2cosθ1 – ir2sin θ1 .....`[because theta_1 = theta_2]`
= (r1cosθ1 – r2cosθ1) + i(r1sinθ1 – r2sinθ1)
∴ |z1 – z2| = `sqrt((r_1 costheta_1 - r_2 cos theta_1)^2 + (r_1 sintheta_1 - r_2 sin theta_1)^2`
= `sqrt((r_1^2 cos^2 theta_1 + r_2^2 cos^2 theta_1 - 2r_1r_2 cos^2 theta_1 + r_1^2 sin^2 theta_1 + r_2^2 sin^2 theta_1 - 2r_1r_2 sin^2 theta_1))`
= `sqrt(r_1^2 (cos^2 theta_1 + sin^2 theta_1) + r_2^2 (cos^2 theta_1 + sin^2 theta_1) - 2r_1 r_2 (cos^2 theta_1 + sin^2 theta_1))`
= `sqrt(r_1^2 + r_2^2 - 2r_1r_2)`
= `sqrt((r_1 - r_2)^2`
= r1 – r2
= |z1| – |z2|
Hence, |z1| – |z2| = |z1| – |z2|.
APPEARS IN
RELATED QUESTIONS
Find the modulus and the argument of the complex number `z = – 1 – isqrt3`
Find the modulus and the argument of the complex number `z =- sqrt3 + i`
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: – 1 – i
Convert the given complex number in polar form: –3
Convert the given complex number in polar form `sqrt3 + i`
Convert the given complex number in polar form: i
Convert the following in the polar form:
`(1+7i)/(2-i)^2`
Convert the following in the polar form:
`(1+3i)/(1-2i)`
Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
The locus of z satisfying arg(z) = `pi/3` is ______.
What is the polar form of the complex number (i25)3?
Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.
If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.
z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.
Write the complex number z = `(1 - i)/(cos pi/3 + i sin pi/3)` in polar form.
If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.
arg(z) + arg`barz (barz ≠ 0)` is ______.
Find z if |z| = 4 and arg(z) = `(5pi)/6`.
Find principal argument of `(1 + i sqrt(3))^2`.
|z1 + z2| = |z1| + |z2| is possible if ______.
The value of arg (x) when x < 0 is ______.