English

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0. - Mathematics

Advertisements
Advertisements

Question

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.

Sum

Solution

Let z1 = r1(cosθ1 + isin θ1) and z2 = r2(cosθ2 + isin θ2)

Where r1 = |z1|, arg(z1) = θ1, r2 = |z2|, arg(z2) = θ2.

We have |z1 + z2| = |z1| + |z2|

= `|r_1(cos theta_1 + cos theta_2) + r_2 (cos theta_2 + sin theta_2)|`

= r1 + r2

= `r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2)`

= (r1 + r2)2

⇒ `cos(theta_1 - theta_2)` = 1

⇒ `theta_1 - theta_2` i.e. argz1 = argz2 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Solved Examples [Page 80]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 7 | Page 80

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 + i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form: –3


Convert the following in the polar form:

`(1+7i)/(2-i)^2`


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).


The locus of z satisfying arg(z) = `pi/3` is ______.


What is the polar form of the complex number (i25)3?


The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is ______.


Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


arg(z) + arg`barz  (barz ≠ 0)` is ______.


If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find z if |z| = 4 and arg(z) = `(5pi)/6`.


Find principal argument of `(1 + i sqrt(3))^2`.


|z1 + z2| = |z1| + |z2| is possible if ______.


The value of arg (x) when x < 0 is ______.


If arg(z) < 0, then arg(–z) – arg(z) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×