Advertisements
Advertisements
Question
If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.
Solution
If |z| = 4 and arg(z) = `(5pi)/6`, then z = `underlinebb(-2 sqrt(3) + 2i)`.
Explanation:
Given that: |z| = 4 and arg(z) = `(5pi)/6`
Let z = x + yi
|z| = `sqrt(x^2 + y^2)` = 4
⇒ x2 + y2 = 16 ......(i)
arg(z) = `tan^-1 (y/x) = (5pi)/6`
⇒ `y/x = tan (5pi)/6`
= `tan(pi - pi/6)`
= `- tan pi/6`
= `-1/sqrt(3)`
∴ x = `- sqrt(3) y` ....(ii)
From equation (i) and (ii),
`(- sqrt(3) y)^2 + y^2` = 16
⇒ 3y2 + y2 = 16
⇒ 4y2 = 16
⇒ y2 = 4
⇒ y = `+- 2`
∴ x = `-2 sqrt(3)`
So, z = `-2 sqrt(3) + 2i`
APPEARS IN
RELATED QUESTIONS
Convert the given complex number in polar form: 1 – i
Convert the given complex number in polar form: – 1 – i
Convert the given complex number in polar form: –3
Convert the following in the polar form:
`(1+7i)/(2-i)^2`
Convert the following in the polar form:
`(1+3i)/(1-2i)`
Let z1 and z2 be two complex numbers such that `barz_1 + ibarz_2` = 0 and arg(z1 z2) = π. Then find arg (z1).
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|. Then show that arg(z1) – arg(z2) = 0.
If |z| = 2 and arg(z) = `pi/4`, then z = ______.
What is the polar form of the complex number (i25)3?
If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.
z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.
If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.
Write the complex number z = `(1 - i)/(cos pi/3 + i sin pi/3)` in polar form.
If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.
arg(z) + arg`barz (barz ≠ 0)` is ______.
State True or False for the following:
Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.
Find principal argument of `(1 + i sqrt(3))^2`.
|z1 + z2| = |z1| + |z2| is possible if ______.
If arg(z) < 0, then arg(–z) – arg(z) = ______.