मराठी

Show that the complex number z, satisfying the condition arg(z-1z+1)=π4 lies on a circle. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the complex number z, satisfying the condition arg`((z - 1)/(z + 1)) = pi/4` lies on a circle.

बेरीज

उत्तर

Let z = x + iy

Given that: arg`((z - 1)/(z + 1)) = pi/4`

⇒ arg(z – 1) – arg(z + 1) = `pi/4`  ......`[because "arg"(z_1) - "arg" (z_2) = "arg"z_1/z_2]`

⇒ arg[x + iy – 1] – arg[x + iy + 1] = `pi/4`  

⇒ arg[(x – 1) + iy] – arg[(x + 1) + iy] = `pi/4`

⇒ `tan^-1  y/(x - 1) - tan^-1  y/(x + 1) = pi/4`  ......`[because "arg" (x + yi) = tan^-1  y/x]`

⇒ `tan^-1  ((y/(x - 1) - y/(x + 1))/(1 + y/(x - 1) xx y/(x + 1))) = pi/4`

⇒ `(xy + y - xy + y)/(x^2 - 1 + y^2) = tan  pi/4`

⇒ `(2y)/(x^2 + y^2 - 1)` = 1

⇒ x2 + y2  – 1 = 2y

⇒ x2  + y2  – 2y – 1 = 0

Which is a circle.

Hence, z lies on a circle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 10 | पृष्ठ ९१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`


Find the modulus and the argument of the complex number `z =- sqrt3 + i`


Convert the given complex number in polar form: 1 – i


Convert the given complex number in polar form: – 1 – i


Convert the given complex number in polar form `sqrt3 + i`


Convert the given complex number in polar form: i


Convert the following in the polar form:

`(1+7i)/(2-i)^2`


If the imaginary part of `(2z + 1)/(iz + 1)` is –2, then show that the locus of the point representing z in the argand plane is a straight line.


What is the polar form of the complex number (i25)3?


The amplitude of `sin  pi/5 + i(1 - cos  pi/5)` is ______.


If arg(z – 1) = arg(z + 3i), then find x – 1 : y. where z = x + iy.


z1 and z2 are two complex numbers such that |z1| = |z2| and arg(z1) + arg(z2) = π, then show that z1 = `-barz_2`.


If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that `|z_1 - z_2| = |z_1| - |z_2|`.


Write the complex number z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` in polar form.


If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = `pi/2`, then show that `barz`w = –i.


arg(z) + arg`barz  (barz ≠ 0)` is ______.


If |z| = 4 and arg(z) = `(5pi)/6`, then z = ______.


State True or False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg(z1 – z2) = 0.


Find principal argument of `(1 + i sqrt(3))^2`.


|z1 + z2| = |z1| + |z2| is possible if ______.


The value of arg (x) when x < 0 is ______.


If arg(z) < 0, then arg(–z) – arg(z) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×