मराठी

If |z-2z+2|=π6, then the locus of z is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.

बेरीज

उत्तर

If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is circle.

Explanation:

Given that: `|(z - 2)/(z + 2)| = pi/6`

Let z = x + iy

⇒ `|(x + iy - 2)/(x + iy + 2)| = pi/6`

⇒ `|((x - 2) + iy)/((x + 2) + iy)| = pi/6`

⇒ `6|(x - 2) + iy| = pi|(x + 2) + iy|`

⇒ `6sqrt((x - 2)^2 + y^2) = pisqrt((x + 2)^2 + y^2)`

⇒ `36[x^2 + 4 - 4x + y^2] = pi^2[x^2 + 4 + 4x + y^2]`

⇒ 36x2 + 144 – 144x + 36y2 = π2x2 + 4π2 + 4π2x + π2y2

⇒ (36 – π2)x2 + (36 – π2)y2 – (144 + 4π2)x + 144 – 4π2 = 0

Which represents are equation of a circle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 25.(ix) | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3x + 9 = 0


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 27x2 – 10x + 1 = 0


x2 + 1 = 0


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


\[x^2 - 4x + 7 = 0\]


\[x^2 - x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×