मराठी

If α, β Are the Roots of the Equation X 2 + P X + 1 = 0 ; γ , δ the Roots of the Equation X 2 + Q X + 1 = 0 , Then ( α − γ ) ( α + δ ) ( β − γ ) ( β + δ ) = - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]

पर्याय

  • \[q^2 - p^2\]

  • \[p^2 - q^2\]

  • \[p^2 + q^2\]

  • none of these.

MCQ

उत्तर

\[q^2 - p^2\]

Given: 

\[\alpha \text { and } \beta\] are the roots of the equation  \[x^2 + px + 1 = 0\].

Also,  

\[\gamma \text { and } \delta\] are the roots of the equation \[x^2 + qx + 1 = 0\].

Then, the sum and the product of the roots of the given equation are as follows:

\[\alpha + \beta = - \frac{p}{1} = - p\]

\[\alpha\beta = \frac{1}{1} = 1\]

\[\gamma + \delta = - \frac{q}{1} = - q\]

\[\gamma\delta = \frac{1}{1} = 1\]

\[\text { Moreover,} (\gamma + \delta )^2 = \gamma^2 + \delta^2 + 2\gamma\delta\]

\[ \Rightarrow \gamma^2 + \delta^2 = q^2 - 2\]

\[\therefore (\alpha - \gamma) (\alpha + \delta) (\beta - \gamma) (\beta + \delta) = (\alpha - \gamma) (\beta - \gamma) (\alpha + \delta) (\beta + \delta)\]

\[ = \left( \alpha\beta - \alpha\gamma - \beta\gamma + \gamma^2 \right)\left( \alpha\beta + \alpha\delta + \beta\delta + \delta^2 \right)\]

\[ = \left[ \alpha\beta - \gamma\left( \alpha + \beta \right) + \gamma^2 \right] \left[ \alpha\beta + \delta \left( \alpha + \beta \right) + \delta^2 \right]\]

\[ = (1 - \gamma( - p) + \gamma^2 ) (1 + \delta( - p) + \delta^2 )\]

\[ = (1 + \gamma p + \gamma^2 ) (1 - \delta p + \delta^2 )\]

\[ = 1 - p\delta + \delta^2 + p\gamma - p^2 \gamma\delta + p\gamma \delta^2 + \gamma^2 - p\delta \gamma^2 + \gamma^2 \delta^2 \]

\[ = 1 - p\delta + p\gamma + \delta^2 - p^2 \gamma\delta + p\gamma \delta^2 + \gamma^2 - p\delta \gamma^2 + \gamma^2 \delta^2 \]

\[ = 1 - p(\delta - \gamma) - p^2 \gamma\delta + p\gamma\delta (\delta - \gamma) + ( \gamma^2 + \delta^2 ) + 1\]

\[ = 1 - p^2 \gamma\delta + p\gamma\delta (\delta - \gamma) - p(\delta - \gamma) + ( \gamma^2 + \delta^2 ) + 1\]

\[ = 1 - p^2 + (\delta - \gamma) p (\gamma\delta - 1) + q^2 - 2 + 1\]

\[ = - p^2 + (\delta - \gamma) p (1 - 1) + q^2 \]

\[ = q^2 - p^2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 8 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[x^2 - 4x + 7 = 0\]


\[x^2 + 2x + 5 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×