मराठी

The Number of Real Solutions of ∣ ∣ 2 X − X 2 − 3 ∣ ∣ = 1 is - Mathematics

Advertisements
Advertisements

प्रश्न

The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is

पर्याय

  • 0

  • 2

  • 3

  • 4

MCQ

उत्तर

2

Explanation:

Given equation: 

\[|2x - x^2 - 3| = 1\]

\[ 2x - x^2 - 3 = 1\]

\[ \Rightarrow 2x - x^2 - 4 = 0\]

\[ \Rightarrow x^2 - 2x + 4 = 0\]

Discriminant D = 4 - 16 

= -12 < 0

Hence the roots are unreal. 

\[- 2x + x^2 + 3 = 1\]

= x2 – 2x -2 = 0 

Discriminant, D = 4 – 8 = - 4 < 0 

Hence the given equation has no real roots.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 9 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


9x2 + 4 = 0


\[x^2 - 4x + 7 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[- x^2 + x - 2 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×