मराठी

The number of solutions of x2+|x-1|=1 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of solutions of `x^2 + |x - 1| = 1` is ______. 

पर्याय

  • 0

  • 1

  • 2

  • 3

MCQ
रिकाम्या जागा भरा

उत्तर

The number of solutions of `x^2 + |x - 1| = 1` is 2.

\[x^2 + |x - 1| = x^2 + x - 1 , x \geq 1\]

                    \[ = x^2 - x + 1 , x < 1\]

\[x^2 + x - 1 = 1\]

\[ \Rightarrow x^2 + x - 2 = 0\]

\[ \Rightarrow x^2 + 2x - x - 2 = 0\]

\[ \Rightarrow x\left( x + 2 \right) - 1\left( x + 2 \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow x + 2 = 0 \text { or }, x - 1 = 0\]

\[ \Rightarrow x = - 2 \text { or } x = 1\]

Since

\[-\] 2 does not satisfy the condition 

\[x \geq 1\]

(ii)

\[x^2 - x + 1 = 1\]

\[ \Rightarrow x^2 - x = 0\]

\[ \Rightarrow x^2 - x = 0\]

\[ \Rightarrow x ( x - 1) = 0\]

\[ \Rightarrow x = 0 \text { or }, (x - 1) = 0\]

\[ \Rightarrow x = 0, x = 1\]

x = 1 does not satisfy the condition x < 1
So, there are two solutions.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 10 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation 27x2 – 10x + 1 = 0


9x2 + 4 = 0


4x2 − 12x + 25 = 0


\[x^2 + 2x + 5 = 0\]


\[x^2 - x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×