Advertisements
Advertisements
प्रश्न
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
पर्याय
1
0
2
none of these
उत्तर
0
\[\text { Let } p = \left| x \right|\]
\[ \Rightarrow p^2 + p - 6 = 0\]
\[ \Rightarrow p^2 + 3p - 2p - 6 = 0\]
\[ \Rightarrow \left( p + 3 \right)\left( p - 2 \right) = 0\]
\[ \Rightarrow p = - 3, 2\]
\[\text { Also }, \left| x \right| = p\]
\[ \Rightarrow \left| x \right| = 2, or \left| x \right| = - 3\]
\[\text { Modulus can not be negative }, \]
\[ \therefore \left| x \right| = 2\]
\[ \Rightarrow x = \pm 2\]
\[ \Rightarrow x = 2 \text { or } - 2\]
\[\text { Sum of the roots of x is 0 }\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 5 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
9x2 + 4 = 0
x2 + 2x + 5 = 0
x2 + x + 1 = 0
\[4 x^2 + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.