मराठी

The Values of K for Which the Quadratic Equation K X 2 + 1 = K X + 3 X − 11 X 2 Has Real and Equal Roots Are - Mathematics

Advertisements
Advertisements

प्रश्न

The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are

पर्याय

  • −11, −3

  •  5, 7

  •  5, −7

  • none of these

MCQ

उत्तर

5, −7
The given equation is \[k x^2 + 1 = kx + 3x - 11 x^2\] which can be written as.

\[k x^2 + 11 x^2 - kx - 3x + 1 = \]

\[ \Rightarrow \left( k + 11 \right) x^2 - \left( k + 3 \right)x + 1 = 0\]

For equal and real roots, the discriminant of

\[\left( k + 11 \right) x^2 - \left( k + 3 \right)x + 1 = 0\].

\[\therefore \left( k + 3 \right)^2 - 4\left( k + 11 \right) = 0\]

\[ \Rightarrow k^2 + 2k - 35 = 0\]

\[ \Rightarrow \left( k - 5 \right)\left( k + 7 \right) = 0\]

\[ \Rightarrow k = 5, - 7\]

Hence, the equation has real and equal roots when \[k = 5 , - 7 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 14 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


x2 + 1 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[x^2 - x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×