Advertisements
Advertisements
प्रश्न
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
पर्याय
0
12
24
32
उत्तर
(a) and (c)
Let \[\alpha\] be the common roots of the equations \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\]
Therefore,
\[\alpha^2 - 11\alpha + a = 0\] ... (1)
\[\alpha^2 - 14\alpha + 2a = 0\] ... (2)
Solving (1) and (2) by cross multiplication, we get,
\[\frac{\alpha^2}{- 22a + 14a} = \frac{\alpha}{a - 2a} = \frac{1}{- 14 + 11}\]
\[ \Rightarrow \alpha^2 = \frac{- 22a + 14a}{- 14 + 11}, \alpha = \frac{a - 2a}{- 14 + 11}\]
\[ \Rightarrow \alpha^2 = \frac{- 8a}{- 3} = \frac{8a}{3}, \alpha = \frac{- a}{- 3} = \frac{a}{3}\]
\[ \Rightarrow \left( \frac{a}{3} \right)^2 = \frac{8a}{3}\]
\[ \Rightarrow a^2 = 24a\]
\[ \Rightarrow a^2 - 24a = 0\]
\[ \Rightarrow a\left( a - 24 \right) = 0\]
\[ \Rightarrow a = 0 \text { or } a = 24\]
Disclaimer: The solution given in the book is incomplete. The solution is created according to the question given in the book and both the options are correct.
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 – x + 2 = 0
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
Solve the equation 21x2 – 28x + 10 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
4x2 − 12x + 25 = 0
\[4 x^2 + 1 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[2 x^2 + x + 1 = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.