Advertisements
Advertisements
Question
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
Options
0
12
24
32
Solution
(a) and (c)
Let \[\alpha\] be the common roots of the equations \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\]
Therefore,
\[\alpha^2 - 11\alpha + a = 0\] ... (1)
\[\alpha^2 - 14\alpha + 2a = 0\] ... (2)
Solving (1) and (2) by cross multiplication, we get,
\[\frac{\alpha^2}{- 22a + 14a} = \frac{\alpha}{a - 2a} = \frac{1}{- 14 + 11}\]
\[ \Rightarrow \alpha^2 = \frac{- 22a + 14a}{- 14 + 11}, \alpha = \frac{a - 2a}{- 14 + 11}\]
\[ \Rightarrow \alpha^2 = \frac{- 8a}{- 3} = \frac{8a}{3}, \alpha = \frac{- a}{- 3} = \frac{a}{3}\]
\[ \Rightarrow \left( \frac{a}{3} \right)^2 = \frac{8a}{3}\]
\[ \Rightarrow a^2 = 24a\]
\[ \Rightarrow a^2 - 24a = 0\]
\[ \Rightarrow a\left( a - 24 \right) = 0\]
\[ \Rightarrow a = 0 \text { or } a = 24\]
Disclaimer: The solution given in the book is incomplete. The solution is created according to the question given in the book and both the options are correct.
APPEARS IN
RELATED QUESTIONS
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `x^2 + x + 1/sqrt2 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
\[4 x^2 + 1 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[x^2 - x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.