Advertisements
Advertisements
Question
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solution
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
\[ \Rightarrow x^2 + x - 2ix - 2i = 0\]
\[ \Rightarrow x\left( x + 1 \right) - 2i\left( x + 1 \right) = 0\]
\[ \Rightarrow \left( x + 1 \right)\left( x - 2i \right) = 0\]
\[ \Rightarrow \left( x + 1 \right) = 0 or \left( x - 2i \right) = 0\]
\[ \Rightarrow x = - 1, 2i\]
\[\text { So, the roots of the given quadratic equation are - 1 and 2i } . \]
APPEARS IN
RELATED QUESTIONS
Solve the equation –x2 + x – 2 = 0
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation 21x2 – 28x + 10 = 0
4x2 − 12x + 25 = 0
\[4 x^2 + 1 = 0\]
\[x^2 + 2x + 5 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
The least value of k which makes the roots of the equation \[x^2 + 5x + k = 0\] imaginary is
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.