Advertisements
Advertisements
Question
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solution
\[ 6 x^2 - 17ix - 12 = 0\]
\[ \Rightarrow 6 x^2 - 9ix - 8ix - 12 = 0\]
\[ \Rightarrow 3x\left( 2x - 3i \right) - 4i\left( 2x - 3i \right) = 0\]
\[ \Rightarrow \left( 2x - 3i \right)\left( 3x - 4i \right) = 0\]
\[ \Rightarrow \left( 2x - 3i \right) = 0 or \left( 3x - 4i \right) = 0\]
\[ \Rightarrow x = \frac{3}{2}i, \frac{4}{3}i\]
\[\text { So, the roots of the given quadratic equation are } \frac{3}{2}i \text { and } \frac{4}{3}i . \]
APPEARS IN
RELATED QUESTIONS
Solve the equation 2x2 + x + 1 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation 21x2 – 28x + 10 = 0
\[4 x^2 + 1 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The number of solutions of `x^2 + |x - 1| = 1` is ______.
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.