English

Solving the Following Quadratic Equation by Factorization Method: 6 X 2 − 17 I X − 12 = 0 - Mathematics

Advertisements
Advertisements

Question

Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solution

\[ 6 x^2 - 17ix - 12 = 0\]

\[ \Rightarrow 6 x^2 - 9ix - 8ix - 12 = 0\]

\[ \Rightarrow 3x\left( 2x - 3i \right) - 4i\left( 2x - 3i \right) = 0\]

\[ \Rightarrow \left( 2x - 3i \right)\left( 3x - 4i \right) = 0\]

\[ \Rightarrow \left( 2x - 3i \right) = 0 or \left( 3x - 4i \right) = 0\]

\[ \Rightarrow x = \frac{3}{2}i, \frac{4}{3}i\]

\[\text { So, the roots of the given quadratic equation are } \frac{3}{2}i \text { and } \frac{4}{3}i . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.2 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.2 | Q 1.4 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation 2x2 + x + 1 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 21x2 – 28x + 10 = 0


\[4 x^2 + 1 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[x^2 - x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×