English

Solve the equation x2+x+12=0 - Mathematics

Advertisements
Advertisements

Question

Solve the equation `x^2 + x + 1/sqrt2 = 0`

Sum

Solution

The given quadratic equation is  `x^2 + x + 1/sqrt2 = 0`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise 5.3 [Page 109]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise 5.3 | Q 5.3 | Page 109

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3 = 0


Solve the equation 2x2 + x + 1 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


9x2 + 4 = 0


\[x^2 - 4x + 7 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[x^2 + x + 1 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×