Advertisements
Advertisements
Question
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
Solution
\[\text { Given: } \]
\[(a - b) x^2 + (b - c)x + (c - a) = 0\]
\[ \Rightarrow x^2 + \frac{b - c}{a - b}x + \frac{c - a}{a - b} = 0\]
\[ \Rightarrow x^2 - \frac{c - a}{a - b}x - x + \frac{c - a}{a - b} = 0 \left[ \because \frac{b - c}{a - b} = \frac{- c + a - a + b}{a - b} = - \frac{c - a}{a - b} - 1 \right]\]
\[ \Rightarrow x\left( x - \frac{c - a}{a - b} \right) - 1\left( x + \frac{c - a}{a - b} \right) = 0\]
\[ \Rightarrow \left( x - \frac{c - a}{a - b} \right)\left( x - 1 \right) = 0\]
\[ \Rightarrow x - \frac{c - a}{a - b} = 0 or x - 1 = 0\]
\[ \Rightarrow x = \frac{c - a}{a - b} or x = 1\]
\[\text { Thus, roots of the equation are } \frac{c - a}{a - b} \text { and }1 .\]
Now,
\[\alpha + \beta = - \frac{b - c}{a - b}\]
\[ \Rightarrow 1 + \beta = - \frac{b - c}{a - b}\]
\[ \Rightarrow \beta = - \frac{b - c}{a - b} - 1 = \frac{c - a}{a - b}\]
APPEARS IN
RELATED QUESTIONS
Solve the equation 2x2 + x + 1 = 0
Solve the equation x2 + 3x + 9 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation 27x2 – 10x + 1 = 0
Solve the equation 21x2 – 28x + 10 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
x2 + 1 = 0
9x2 + 4 = 0
x2 + 2x + 5 = 0
x2 + x + 1 = 0
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
The least value of k which makes the roots of the equation \[x^2 + 5x + k = 0\] imaginary is
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.