English

Write Roots of the Equation ( a − B ) X 2 + ( B − C ) X + ( C − a ) = 0 . - Mathematics

Advertisements
Advertisements

Question

Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .

Solution

\[\text { Given: } \]

\[(a - b) x^2 + (b - c)x + (c - a) = 0\]

\[ \Rightarrow x^2 + \frac{b - c}{a - b}x + \frac{c - a}{a - b} = 0\]

\[ \Rightarrow x^2 - \frac{c - a}{a - b}x - x + \frac{c - a}{a - b} = 0 \left[ \because \frac{b - c}{a - b} = \frac{- c + a - a + b}{a - b} = - \frac{c - a}{a - b} - 1 \right]\]

\[ \Rightarrow x\left( x - \frac{c - a}{a - b} \right) - 1\left( x + \frac{c - a}{a - b} \right) = 0\]

\[ \Rightarrow \left( x - \frac{c - a}{a - b} \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow x - \frac{c - a}{a - b} = 0 or x - 1 = 0\]

\[ \Rightarrow x = \frac{c - a}{a - b} or x = 1\]

\[\text { Thus, roots of the equation are } \frac{c - a}{a - b} \text { and  }1 .\]

Now,

\[\alpha + \beta = - \frac{b - c}{a - b}\]

\[ \Rightarrow 1 + \beta = - \frac{b - c}{a - b}\]

\[ \Rightarrow \beta = - \frac{b - c}{a - b} - 1 = \frac{c - a}{a - b}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.3 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.3 | Q 6 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×