English

If X is Real and K = X 2 − X + 1 X 2 + X + 1 , Then - Mathematics

Advertisements
Advertisements

Question

If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then

Options

  • k ∈ [1/3,3]

  •  k ≥ 3

  •  k ≤ 1/3

  •  none of these

MCQ

Solution

k ∈ [1/3,3]

\[k = \frac{x^2 - x + 1}{x^2 + x + 1}\]

\[ \Rightarrow k x^2 + kx + k = x^2 - x + 1\]

\[ \Rightarrow \left( k - 1 \right) x^2 + \left( k + 1 \right)x + k - 1 = 0\]

For real values of x, the discriminant of

\[\left( k - 1 \right) x^2 + \left( k + 1 \right)x + k - 1 = 0\] should be greater than or equal to zero.

\[\therefore if k \neq 1\]

\[ \left( k + 1 \right)^2 - 4\left( k - 1 \right)\left( k - 1 \right) \geq 0 \]

\[ \Rightarrow \left( k + 1 \right)^2 - \left\{ 2\left( k - 1 \right) \right\}^2 \geq 0\]

\[ \Rightarrow \left( k + 1 + 2k - 2 \right)\left( k + 1 - 2k + 2 \right) \geq 0\]

\[ \Rightarrow \left( 3k - 1 \right)\left( - k + 3 \right) \geq 0\]

\[ \Rightarrow \left( 3k - 1 \right)\left( k - 3 \right) \leq 0\]

\[ \Rightarrow \frac{1}{3} \leq k \leq 3 i . e . k \in \left[ \frac{1}{3}, 3 \right] - \left\{ 1 \right\} . . . (i)\]

And if k=1, then,
x=0, which is real       ...(ii)
So, from (i) and (ii), we get,

\[k \in \left[ \frac{1}{3}, 3 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.4 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.4 | Q 11 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×