English

X 2 + X + 1 = 0 - Mathematics

Advertisements
Advertisements

Question

\[x^2 + x + 1 = 0\]

Solution

We have:

\[x^2 + x + 1 = 0\]

\[ \Rightarrow x^2 + x + \frac{1}{4} + \frac{3}{4} = 0\]

\[ \Rightarrow \left( x + \frac{1}{2} \right)^2 - \frac{3}{4} i^2 = 0\]

\[ \Rightarrow \left( x + \frac{1}{2} \right)^2 - \left( \frac{i\sqrt{3}}{2} \right)^2 = 0\]

\[ \Rightarrow \left( x + \frac{1}{2} + \frac{i\sqrt{3}}{2} \right) \left( x + \frac{1}{2} - \frac{i\sqrt{3}}{2} \right) = 0\]

\[\Rightarrow \left( x + \frac{1}{2} + \frac{i\sqrt{3}}{2} \right) = 0\] or \[\left( x + \frac{1}{2} - \frac{i\sqrt{3}}{2} \right) = 0\]

\[\Rightarrow x = - \frac{1}{2} - \frac{i\sqrt{3}}{2}\] or  \[x = - \frac{1}{2} + \frac{i\sqrt{3}}{2}\]

Hence, the roots of the equation are \[- \frac{1}{2} \pm \frac{i\sqrt{3}}{2} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.1 | Q 12 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation –x2 + x – 2 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


9x2 + 4 = 0


x2 + 2x + 5 = 0


\[x^2 - 4x + 7 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×