English

If α, β Are the Roots of the Equation X 2 + P X + Q = 0 Then − 1 α + 1 β Are the Roots of the Equation - Mathematics

Advertisements
Advertisements

Question

If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation

Options

  • \[x^2 - px + q = 0\]

  • \[x^2 + px + q = 0\]

  • \[q x^2 + px + 1 = 0\]

  • \[q x^2 - px + 1 = 0\]

MCQ

Solution

\[q x^2 - px + 1 = 0\]

Given equation: 

\[x^2 + px + q = 0\]

Also, 

\[\alpha\] and \[\beta\] are the roots of the given equation.
Then, sum of the roots = \[\alpha + \beta = - p\]

Product of the roots = \[\alpha\beta = q\]

Now, for roots 

\[- \frac{1}{\alpha} , - \frac{1}{\beta}\] , we have:

Sum of the roots = \[- \frac{1}{\alpha} - \frac{1}{\beta} = - \frac{\alpha + \beta}{\alpha\beta} = - \left( \frac{- p}{q} \right) = \frac{p}{q}\]

Product of the roots = \[\frac{1}{\alpha\beta} = \frac{1}{q}\]

Hence, the equation involving the roots \[- \frac{1}{\alpha}, - \frac{1}{\beta}\] is as follows:

\[x^2 - \left( \alpha + \beta \right)x + \alpha\beta = 0\]

\[\Rightarrow x^2 - \frac{p}{q}x + \frac{1}{q} = 0\]

\[ \Rightarrow q x^2 - px + 1 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.4 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.4 | Q 21 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3 = 0


Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation   `x^2 -2x + 3/2 = 0`  


x2 + 1 = 0


4x2 − 12x + 25 = 0


x2 + x + 1 = 0


\[5 x^2 - 6x + 2 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×