English

13 X 2 + 7 X + 1 = 0 - Mathematics

Advertisements
Advertisements

Question

\[13 x^2 + 7x + 1 = 0\]

Solution

Given: 

\[13 x^2 + 7x + 1 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get 
\[a = 13, b = 7\]  and \[c = 1\] .
Substituting these values in 
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\],we get:
\[\alpha = \frac{- 7 + \sqrt{49 - 4 \times 13 \times 1}}{2 \times 13}\] and \[\beta = \frac{- 7 - \sqrt{49 - 4 \times 13 \times 1}}{2 \times 13}\]
\[\Rightarrow \alpha = \frac{- 7 + \sqrt{49 - 52}}{26}\]   and   \[\beta = \frac{- 7 - \sqrt{49 - 52}}{26}\]
\[\Rightarrow \alpha = \frac{- 7 + \sqrt{- 3}}{26}\] and \[\beta = \frac{- 7 - \sqrt{- 3}}{26}\]
\[\Rightarrow \alpha = \frac{- 7 + i\sqrt{3}}{26}\] and \[\beta = \frac{- 7 - i\sqrt{3}}{26}\]
\[\Rightarrow \alpha = - \frac{7}{26} + \frac{\sqrt{3}}{26}i\] and   \[\beta = - \frac{7}{26} - \frac{\sqrt{3}}{26}i\]
Hence, the roots of the equation are  
\[- \frac{7}{26} \pm \frac{\sqrt{3}}{26}i .\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.1 | Q 18 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation 2x2 + x + 1 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 – x + 2 = 0


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation 27x2 – 10x + 1 = 0


x2 + 1 = 0


4x2 − 12x + 25 = 0


x2 + x + 1 = 0


\[4 x^2 + 1 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 - x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×