Advertisements
Advertisements
Question
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solution
\[ x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]
\[a = 1, b = - \left( 2 + i \right) \text { and } c = - \left( 1 - 7i \right)\]
\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]
\[ \Rightarrow x = \frac{\left( 2 + i \right) \pm \sqrt{\left( 2 + i \right)^2 + 4\left( 1 - 7i \right)}}{2}\]
\[ \Rightarrow x = \frac{\left( 2 + i \right) \pm \sqrt{7 - 24i}}{2} . . . \left( i \right)\]
\[\text { Let }x + iy = \sqrt{7 - 24i} . \text { Then }, \]
\[ \Rightarrow \left( x + iy \right)^2 = 7 - 24i\]
\[ \Rightarrow x^2 - y^2 + 2ixy = 7 - 24i \]
\[ \Rightarrow x^2 - y^2 = 7 \text { and } 2xy = - 24 . . . \left( ii \right)\]
\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]
\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 49 + 576 = 625\]
\[ \Rightarrow x^2 + y^2 = 25 . . . \left( iii \right) \]
\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]
\[ \Rightarrow x = \pm 4 \text { and } y = \pm 3\]
\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]
\[ \Rightarrow x = - 4, y = 3 or, x = 4, y = - 3\]
\[ \Rightarrow x + iy = - 4 + 3i or, 4 - 3i\]
\[ \Rightarrow \sqrt{7 - 24i} = \pm 4 - 3i\]
\[\text { Substituting these values in } \left( i \right), \text { we get }\]
\[ \Rightarrow x = \frac{\left( 2 + i \right) \pm \left( 4 - 3i \right)}{2}\]
\[ \Rightarrow x = 3 - i, - 1 + 2i\]
\[\text { So, the roots of the given quadratic equation are 3 - i and } - 1 + 2i . \]
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
Solve the equation 27x2 – 10x + 1 = 0
x2 + 1 = 0
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]