Advertisements
Advertisements
Question
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
Options
2
1
4
none of these
Solution
2
Explanation:
\[\left( x^2 + 2x \right)^2 - \left( x + 1 \right)^2 - 55 = 0\]
\[ \Rightarrow \left( x^2 + 2x + 1 - 1 \right)^2 - \left( x + 1 \right)^2 - 55 = 0\]
\[ \Rightarrow \left\{ \left( x + 1 \right)^2 - 1 \right\}^2 - \left( x + 1 \right)^2 - 55 = 0\]
\[ \Rightarrow \left\{ \left( x + 1 \right)^2 \right\}^2 + 1 - 3 \left( x + 1 \right)^2 - 55 = 0\]
\[ \Rightarrow \left\{ \left( x + 1 \right)^2 \right\}^2 - 3 \left( x + 1 \right)^2 - 54 = 0\]
\[\text { Let } p = \left( x + 1 \right)^2 \]
\[ \Rightarrow p^2 - 3p - 54 = 0\]
\[ \Rightarrow p^2 - 9p + 6p - 54 = 0\]
\[ \Rightarrow \left( p + 6 \right)\left( p - 9 \right) = 0\]
\[ \Rightarrow p = 9 \text { or }p = - 6\]
\[\text { Rejecting }p = - 6\]
\[ \Rightarrow \left( x + 1 \right)^2 = 9\]
\[ \Rightarrow x^2 + 2x - 8 = 0\]
\[ \Rightarrow x^2 + 4x - 2x - 8 = 0\]
\[ \Rightarrow \left( x + 4 \right)\left( x - 2 \right) = 0\]
\[ \Rightarrow x = 2, x = - 4\]
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3 = 0
Solve the equation 2x2 + x + 1 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation 27x2 – 10x + 1 = 0
4x2 − 12x + 25 = 0
x2 + x + 1 = 0
\[x^2 - 4x + 7 = 0\]
\[x^2 + 2x + 5 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[x^2 - x + 1 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.