Advertisements
Advertisements
Question
\[x^2 + 2x + 5 = 0\]
Solution
We have:
\[x^2 + 2x + 2 = 0\]
\[ \Rightarrow x^2 + 2x + 1 + 1 = 0\]
\[ \Rightarrow x^2 + 2 \times x \times 1 + 1^2 - (i )^2 = 0\]
\[ \Rightarrow (x + 1 )^2 - (i )^2 = 0\]
\[ \Rightarrow (x + 1 + i) (x + 1 - i) = 0\]
\[\Rightarrow (x + 1 + i) = 0\] or \[(x + 1 - i) = 0\]
\[\Rightarrow x = - 1 - i\] or \[x = - 1 + i\]
Hence, the roots of the equation are
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3 = 0
Solve the equation x2 + 3x + 9 = 0
Solve the equation –x2 + x – 2 = 0
4x2 − 12x + 25 = 0
x2 + x + 1 = 0
\[4 x^2 + 1 = 0\]
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
The least value of k which makes the roots of the equation \[x^2 + 5x + k = 0\] imaginary is
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.