English

X 2 + X √ 2 + 1 = 0 - Mathematics

Advertisements
Advertisements

Question

\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]

Solution

Given equation: 

\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]

Comparing the given equation with  the general form of the quadratic equation

\[a x^2 + bx + c = 0\] ,we get 
\[a = 1, b = \frac{1}{\sqrt{2}}\] and \[c = 1\].
Substituting these values in 
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\],
we get:
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + \sqrt{\frac{1}{2} - 4 \times 1 \times 1}}{2}\]  and \[\beta   =   \frac{- \frac{1}{\sqrt{2}}  - \sqrt{\frac{1}{2}  - 4 \times 1 \times 1}}{2}\]
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + \sqrt{- \frac{7}{2}}}{2}\]  and \[\beta = \frac{- \frac{1}{\sqrt{2}} - \sqrt{- \frac{7}{2}}}{2}\] 
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + i\sqrt{\frac{7}{2}}}{2}\] and  \[\beta = \frac{- \frac{1}{\sqrt{2}} - i\sqrt{\frac{7}{2}}}{2}\]
\[\alpha = \frac{- 1 + i\sqrt{7}}{2\sqrt{2}}\]  and   \[\beta = \frac{- 1 - i\sqrt{7}}{2\sqrt{2}}\]
Hence, the roots of the equation are 
\[\frac{- 1 \pm i\sqrt{7}}{2\sqrt{2}}\] .
shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.1 | Q 23 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation –x2 + x – 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×