Advertisements
Advertisements
Question
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
Options
p = 1, q = −2
p = −1, q = −2
p = −1, q = 2
p = 1, q = 2
Solution
p = 1, q = −2
It is given that, p and q (p ≠ 0, q ≠ 0) are the roots of the equation \[x^2 + px + q = 0\].
\[\therefore \text { Sum of roots } = p + q = - p\]
\[ \Rightarrow 2p + q = 0 . . . (1)\]
\[\text { Product of roots } = pq = q\]
\[ \Rightarrow q\left( p - 1 \right) = 0\]
\[ \Rightarrow p = 1, q = 0 \text { but } q \neq 0\]
Now, substituting p = 1 in (1), we get,
\[2 + q = 0\]
\[ \Rightarrow q = - 2\]
Disclaimer: The solution given in the book is incorrect. The solution here is created according to the question given in the book.
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3 = 0
Solve the equation x2 + 3x + 9 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
9x2 + 4 = 0
x2 + 2x + 5 = 0
\[x^2 + 2x + 5 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.