English

The Value of P and Q (P ≠ 0, Q ≠ 0) for Which P, Q Are the Roots of the Equation X 2 + P X + Q = 0 Are - Mathematics

Advertisements
Advertisements

Question

The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

Options

  • p = 1, q = −2

  • p = −1, q = −2

  • p = −1, q = 2

  • p = 1, q = 2

MCQ

Solution

p = 1, q = −2

It is given that, p and q (p ≠ 0, q ≠ 0) are the roots of the equation \[x^2 + px + q = 0\]. 

\[\therefore \text { Sum of roots } = p + q = - p\]

\[ \Rightarrow 2p + q = 0 . . . (1)\]

\[\text { Product of roots } = pq = q\]

\[ \Rightarrow q\left( p - 1 \right) = 0\]

\[ \Rightarrow p = 1, q = 0 \text { but } q \neq 0\]

Now, substituting p = 1 in (1), we get,

\[2 + q = 0\]

\[ \Rightarrow q = - 2\]

Disclaimer: The solution given in the book is incorrect. The solution here is created according to the question given in the book.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.4 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.4 | Q 17 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


9x2 + 4 = 0


x2 + 2x + 5 = 0


\[x^2 + 2x + 5 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×