English

9x2 + 4 = 0 - Mathematics

Advertisements
Advertisements

Question

9x2 + 4 = 0

Solution

Given: 

\[9 x^2 + 4 = 0\]

\[9 x^2 + 4 = 0\]

\[ \Rightarrow (3x )^2 + 2^2 = 0\]

\[ \Rightarrow (3x )^2 - (2i )^2 = 0\]

\[ \Rightarrow (3x + 2i) (3x - 2i) = 0 [( a^2 - b^2 ) = (a + b) (a - b)]\]

\[\Rightarrow (3x + 2i) = 0\] or,\[(3x - 2i) = 0\]

\[\Rightarrow 3x = - 2i\] or \[3x = 2i\]

\[\Rightarrow x = - \frac{2i}{3}\] or  \[x = \frac{2i}{3}\]

Hence, the roots of the equation are 

\[\frac{2i}{3} \text { and } - \frac{2i}{3} .\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.1 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.1 | Q 2 | Page 5

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation 2x2 + x + 1 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


x2 + x + 1 = 0


\[x^2 + 2x + 5 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 - x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×