हिंदी

9x2 + 4 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

9x2 + 4 = 0

उत्तर

Given: 

\[9 x^2 + 4 = 0\]

\[9 x^2 + 4 = 0\]

\[ \Rightarrow (3x )^2 + 2^2 = 0\]

\[ \Rightarrow (3x )^2 - (2i )^2 = 0\]

\[ \Rightarrow (3x + 2i) (3x - 2i) = 0 [( a^2 - b^2 ) = (a + b) (a - b)]\]

\[\Rightarrow (3x + 2i) = 0\] or,\[(3x - 2i) = 0\]

\[\Rightarrow 3x = - 2i\] or \[3x = 2i\]

\[\Rightarrow x = - \frac{2i}{3}\] or  \[x = \frac{2i}{3}\]

Hence, the roots of the equation are 

\[\frac{2i}{3} \text { and } - \frac{2i}{3} .\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.1 | Q 2 | पृष्ठ ५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3x + 9 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 27x2 – 10x + 1 = 0


4x2 − 12x + 25 = 0


\[4 x^2 + 1 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 - x + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×