हिंदी

17 X 2 + 28 X + 12 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[17 x^2 + 28x + 12 = 0\]

उत्तर

Given: 

\[17 x^2 + 28x + 12 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get
\[a = 17, b = 28\] and \[c = 12\]
Substituting these values in \[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] , we get: 
\[\alpha = \frac{- 28 + \sqrt{784 - 4 \times 17 \times 12}}{34}\]  and   \[\beta = \frac{- 28 - \sqrt{784 - 4 \times 17 \times 12}}{34}\]
\[\Rightarrow \alpha = \frac{- 28 + \sqrt{784 - 816}}{34}\] and  \[\beta = \frac{- 28 - \sqrt{784 - 816}}{34}\]
\[\Rightarrow \alpha = \frac{- 28 + \sqrt{- 32}}{34}\] and \[\beta = \frac{- 28 - \sqrt{- 32}}{34}\]
\[\Rightarrow \alpha = \frac{- 28 + \sqrt{32 i^2}}{34}\]    and \[\beta = \frac{- 28 - \sqrt{32 i^2}}{34}\]
\[\Rightarrow \alpha = \frac{- 28 + 4\sqrt{2} i}{34}\]  and \[\beta = \frac{- 28 - 4\sqrt{2} i}{34}\]
\[\Rightarrow \alpha = \frac{- 14 + 2\sqrt{2} i}{17}\]   and   \[\beta = \frac{- 14 - 2\sqrt{2} i}{17}\]
Hence, the roots of the equation are \[- \frac{14}{17} \pm \frac{2\sqrt{2}}{17}i .\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.1 | Q 15 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3x + 9 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×