Advertisements
Advertisements
प्रश्न
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
विकल्प
−11, −3
5, 7
5, −7
none of these
उत्तर
5, −7
The given equation is \[k x^2 + 1 = kx + 3x - 11 x^2\] which can be written as.
\[k x^2 + 11 x^2 - kx - 3x + 1 = \]
\[ \Rightarrow \left( k + 11 \right) x^2 - \left( k + 3 \right)x + 1 = 0\]
For equal and real roots, the discriminant of
\[\therefore \left( k + 3 \right)^2 - 4\left( k + 11 \right) = 0\]
\[ \Rightarrow k^2 + 2k - 35 = 0\]
\[ \Rightarrow \left( k - 5 \right)\left( k + 7 \right) = 0\]
\[ \Rightarrow k = 5, - 7\]
Hence, the equation has real and equal roots when \[k = 5 , - 7 .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation x2 + 3x + 9 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `x^2 + x + 1/sqrt2 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
9x2 + 4 = 0
x2 + x + 1 = 0
\[5 x^2 - 6x + 2 = 0\]
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.