Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
उत्तर
\[ i x^2 - 4x - 4i = 0\]
\[ \Rightarrow i\left( x^2 + 4ix - 4 \right) = 0\]
\[ \Rightarrow \left( x^2 + 4ix - 4 \right) = 0\]
\[ \Rightarrow \left( x + 2i \right)^2 = 0\]
\[ \Rightarrow x + 2i = 0\]
\[ \Rightarrow x = - 2i\]
\[\text { So, the roots of the given quadratic equation are - 2i and } - 2i .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 9 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation 21x2 – 28x + 10 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
9x2 + 4 = 0
x2 + 2x + 5 = 0
x2 + x + 1 = 0
\[17 x^2 - 8x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is