हिंदी

X2 + X + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

x2 + x + 1 = 0

उत्तर

We have:

\[x^2 + x + 1 = 0\]

\[ \Rightarrow x^2 + x + \frac{1}{4} + \frac{3}{4} = 0\]

\[ \Rightarrow x^2 + \left( \frac{1}{2} \right)^2 + 2 \times x \times \frac{1}{2} - \left( \frac{\sqrt{3}i}{2} \right)^2 = 0\]

\[ \Rightarrow \left( x + \frac{1}{2} \right)^2 - \left( \frac{\sqrt{3}i}{2} \right)^2 = 0\]

\[ \Rightarrow \left( x + \frac{1}{2} + \frac{\sqrt{3}i}{2} \right) \left( x + \frac{1}{2} - \frac{\sqrt{3}i}{2} \right) = 0\]

\[\Rightarrow \left( x + \frac{1}{2} + \frac{\sqrt{3}i}{2} \right) = 0\] or, \[\left( x + \frac{1}{2} - \frac{\sqrt{3}i}{2} \right) = 0\]

\[\Rightarrow\] \[x = - \frac{1}{2} - \frac{\sqrt{3}i}{2}\] or, \[x = - \frac{1}{2} + \frac{\sqrt{3}i}{2}\]

  Hence, the roots of the equation are \[- \frac{1}{2} - i\frac{\sqrt{3}}{2} \text { and } - \frac{1}{2} + i\frac{\sqrt{3}}{2}\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.1 | Q 5 | पृष्ठ ५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation 27x2 – 10x + 1 = 0


x2 + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×