हिंदी

Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.

योग

उत्तर

Let α, β be the roots of the equation.

Therefore, α + β = a – 2 and αβ = –( a + 1)

Now α2 + β2 = (α + β)2 – 2αβ

= (a – 2)2 + 2(a + 1)

= (a – 1)2 + 5

Therefore, α2 + β2 will be minimum if (a – 1)2 = 0, i.e., a = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 13 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation 2x2 + x + 1 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


4x2 − 12x + 25 = 0


x2 + x + 1 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×