हिंदी

The Number of Roots of the Equation ( X + 2 ) ( X − 5 ) ( X − 3 ) ( X + 6 ) = X − 2 X + 4 is - Mathematics

Advertisements
Advertisements

प्रश्न

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 

विकल्प

  • 0

  • 1

  • 2

  • 3

MCQ

उत्तर

1

\[\frac{(x + 2) (x - 5)}{(x - 3) (x + 6)} = \frac{(x - 2)}{(x + 4)}\]

\[ \Rightarrow ( x^2 - 3x - 10) (x + 4) = ( x^2 + 3x - 18) (x - 2)\]

\[ \Rightarrow x^3 + 4 x^2 - 3 x^2 - 12x - 10x - 40 = x^3 - 2 x^2 + 3 x^2 - 6x - 18x + 36\]

\[ \Rightarrow x^2 - 22x - 40 = x^2 - 24x + 36\]

\[ \Rightarrow 2x = 76\]

\[ \Rightarrow x = 38\]

Hence, the equation has only 1 root.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.4 | Q 19 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 27x2 – 10x + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[x^2 + 2x + 5 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×