हिंदी

21 X 2 + 9 X + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[21 x^2 + 9x + 1 = 0\]

उत्तर

Given:  

\[21 x^2 + 9x + 1 = 0\]

Comparing the given equation with  the general form of the quadratic equation

\[a x^2 + bx + c = 0\] we get 
\[a = 21, b = 9\] and \[c = 1\] .
Substituting these values in \[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\]  and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] , we get:
\[\alpha = \frac{- 9 + \sqrt{81 - 4 \times 21 \times 1}}{2 \times 21}\]  and   \[\beta = \frac{- 9 - \sqrt{81 - 4 \times 21 \times 1}}{2 \times 21}\]
\[\Rightarrow \alpha = \frac{- 9 + \sqrt{3}i}{42}\] and \[\beta = \frac{- 9 - \sqrt{3}i}{42}\]
\[\Rightarrow \alpha = - \frac{9}{42} + \frac{\sqrt{3}i}{42}\]  and     \[\beta = - \frac{9}{42} - \frac{\sqrt{3}i}{42}\]
\[\Rightarrow \alpha = - \frac{3}{14} + \frac{\sqrt{3}i}{42}\] and \[\beta = - \frac{3}{14} - \frac{\sqrt{3}i}{42}\] 
Hence, the roots of the equation are \[- \frac{3}{14} \pm \frac{i\sqrt{3}}{42} .\]     
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.1 | Q 10 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3 = 0


Solve the equation 2x2 + x + 1 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation 21x2 – 28x + 10 = 0


x2 + 2x + 5 = 0


\[x^2 - 4x + 7 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×