हिंदी

If α, β Are Roots of the Equation 4 X 2 + 3 X + 7 = 0 , Then 1 / α + 1 / β is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to

विकल्प

  • 7/3

  • −7/3

  • 3/7

  • -3/7

MCQ

उत्तर

−3/7

Given equation: 

\[4 x^2 + 3x + 7 = 0\]

Also, 

\[\alpha\] and \[\beta\] are the roots of the equation.

Sum of the roots = \[\alpha + \beta = \frac{- \text { Coefficient of }x}{\text { Coefficient of } x^2} = - \frac{3}{4}\]

Product of the roots = \[\alpha\beta = \frac{\text { Constant term }}{\text { Coefficient of  }x^2} = \frac{7}{4}\]

  ∴  \[\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{- \frac{3}{4}}{\frac{7}{4}} = - \frac{3}{7}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.4 | Q 4 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + x + 1 = 0


\[x^2 - x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[2 x^2 + x + 1 = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×