हिंदी

8 X 2 − 9 X + 3 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[8 x^2 - 9x + 3 = 0\]

उत्तर

Given: 

\[8 x^2 - 9x + 3 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\],  we get 
\[a = 8, b = - 9\] and \[c = 3\].
Substituting these values in 
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] we get:
\[\alpha = \frac{9 + \sqrt{81 - 4 \times 8 \times 3}}{2 \times 8}\]  and \[\beta = \frac{9 - \sqrt{81 - 4 \times 8 \times 3}}{2 \times 8}\]
\[\Rightarrow \alpha = \frac{9 + \sqrt{81 - 96}}{16}\] and  \[\beta = \frac{9 - \sqrt{81 - 96}}{16}\]
\[\Rightarrow \alpha = \frac{9 + \sqrt{- 15}}{16}\] and  \[\beta = \frac{9 - \sqrt{- 15}}{16}\]
\[\Rightarrow \alpha = \frac{9 + \sqrt{15 i^2}}{16}\] and \[\beta = \frac{9 - \sqrt{15 i^2}}{16}\]
\[\Rightarrow \alpha = \frac{9 + i\sqrt{15}}{16}\]  and \[\beta = \frac{9 - i\sqrt{15}}{16}\]
\[\Rightarrow \alpha = \frac{9}{16} - \frac{\sqrt{15}}{16}i\] and   \[\beta = \frac{9}{16} + \frac{\sqrt{15}}{16}i\]
Hence, the roots of the equation are \[\frac{9}{16} \pm \frac{\sqrt{15}}{16}i\] .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.1 | Q 17 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


9x2 + 4 = 0


4x2 − 12x + 25 = 0


\[x^2 - 4x + 7 = 0\]


\[x^2 - x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×