Advertisements
Advertisements
प्रश्न
\[8 x^2 - 9x + 3 = 0\]
उत्तर
Given:
\[8 x^2 - 9x + 3 = 0\]
Comparing the given equation with the general form of the quadratic equation
APPEARS IN
संबंधित प्रश्न
Solve the equation 2x2 + x + 1 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `x^2 + x + 1/sqrt2 = 0`
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
x2 + 1 = 0
9x2 + 4 = 0
x2 + 2x + 5 = 0
x2 + x + 1 = 0
\[5 x^2 - 6x + 2 = 0\]
\[x^2 - x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The number of solutions of `x^2 + |x - 1| = 1` is ______.
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.