मराठी

8 X 2 − 9 X + 3 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[8 x^2 - 9x + 3 = 0\]

उत्तर

Given: 

\[8 x^2 - 9x + 3 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\],  we get 
\[a = 8, b = - 9\] and \[c = 3\].
Substituting these values in 
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] we get:
\[\alpha = \frac{9 + \sqrt{81 - 4 \times 8 \times 3}}{2 \times 8}\]  and \[\beta = \frac{9 - \sqrt{81 - 4 \times 8 \times 3}}{2 \times 8}\]
\[\Rightarrow \alpha = \frac{9 + \sqrt{81 - 96}}{16}\] and  \[\beta = \frac{9 - \sqrt{81 - 96}}{16}\]
\[\Rightarrow \alpha = \frac{9 + \sqrt{- 15}}{16}\] and  \[\beta = \frac{9 - \sqrt{- 15}}{16}\]
\[\Rightarrow \alpha = \frac{9 + \sqrt{15 i^2}}{16}\] and \[\beta = \frac{9 - \sqrt{15 i^2}}{16}\]
\[\Rightarrow \alpha = \frac{9 + i\sqrt{15}}{16}\]  and \[\beta = \frac{9 - i\sqrt{15}}{16}\]
\[\Rightarrow \alpha = \frac{9}{16} - \frac{\sqrt{15}}{16}i\] and   \[\beta = \frac{9}{16} + \frac{\sqrt{15}}{16}i\]
Hence, the roots of the equation are \[\frac{9}{16} \pm \frac{\sqrt{15}}{16}i\] .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.1 | Q 17 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation 2x2 + x + 1 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[5 x^2 - 6x + 2 = 0\]


\[x^2 - x + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[- x^2 + x - 2 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×