मराठी

5 X 2 − 6 X + 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[5 x^2 - 6x + 2 = 0\]

उत्तर

Given:

\[5 x^2 - 6x + 2 = 0\]

  Comparing the given equation with general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get 
\[a = 5, b = - 6\] and \[c = 2\].
Substituting these values in
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] ,we get: 
\[\alpha = \frac{6 + \sqrt{36 - 4 \times 5 \times 2}}{2 \times 5}\] and \[\beta = \frac{6 - \sqrt{36 - 4 \times 2 \times 5}}{2 \times 5}\]
\[\Rightarrow \alpha = \frac{6 + \sqrt{- 4}}{10}\]     and   \[\beta = \frac{6 - \sqrt{- 4}}{10}\]
\[\Rightarrow \alpha = \frac{6 + \sqrt{4 i^2}}{10}\] and \[\beta = \frac{6 - \sqrt{4 i^2}}{10}\]
\[\Rightarrow \alpha = \frac{6 + 2i}{10}\]  and     \[\beta = \frac{6 - 2i}{10}\]
\[\Rightarrow \alpha = \frac{2 ( 3 + i)}{10}\] and \[\beta = \frac{2 ( 3 - i)}{10}\]
\[\Rightarrow \alpha = \frac{3}{5} + \frac{1}{5}i\]  and    \[\beta = \frac{3}{5} - \frac{1}{5}i\]
Hence, the roots of the equation are \[\frac{3}{5} \pm \frac{1}{5}i .\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.1 | Q 9 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation –x2 + x – 2 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation 27x2 – 10x + 1 = 0


x2 + 1 = 0


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


\[4 x^2 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×