Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
उत्तर
\[ x^2 - x + \left( 1 + i \right) = 0\]
\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]
\[a = 1, b = - 1 \text { and } c = \left( 1 + i \right)\]
\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]
\[ \Rightarrow x = \frac{1 \pm \sqrt{1 - 4\left( 1 + i \right)}}{2}\]
\[ \Rightarrow x = \frac{1 \pm \sqrt{- 3 - 4i}}{2} . . . \left( i \right)\]
\[\text { Let } x + iy = \sqrt{- 3 - 4i} . \text { Then }, \]
\[ \Rightarrow \left( x + iy \right)^2 = - 3 - 4i\]
\[ \Rightarrow x^2 - y^2 + 2ixy = - 3 - 4i \]
\[ \Rightarrow x^2 - y^2 = - 3 \text { and } 2xy = - 4 . . . \left( ii \right)\]
\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]
\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 9 + 16 = 25\]
\[ \Rightarrow x^2 + y^2 = 5 . . . \left( iii \right) \]
\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]
\[ \Rightarrow x = \pm 1 \text { and } y = \pm 2\]
\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]
\[ \Rightarrow x = 1, y = - 2 \text { or,} x = - 1, y = 2\]
\[ \Rightarrow x + iy = 1 - 2i \text { or }- 1 + 2i\]
\[ \Rightarrow \sqrt{- 3 - 4i} = \pm \left( 1 - 2i \right)\]
\[\text{ Substituting these values in } \left( i \right), \text { we get }\]
\[ \Rightarrow x = \frac{1 \pm \left( 1 - 2i \right)}{2}\]
\[ \Rightarrow x = 1 - i, i\]
\[\text { So, the roots of the given quadratic equation are 1 - i and } i .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
x2 + x + 1 = 0
\[x^2 + 2x + 5 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.