English

Solve the Following Quadratic Equation: X 2 − X + ( 1 + I ) = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]

Solution

\[ x^2 - x + \left( 1 + i \right) = 0\]

\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]

\[a = 1, b = - 1 \text { and } c = \left( 1 + i \right)\]

\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]

\[ \Rightarrow x = \frac{1 \pm \sqrt{1 - 4\left( 1 + i \right)}}{2}\]

\[ \Rightarrow x = \frac{1 \pm \sqrt{- 3 - 4i}}{2} . . . \left( i \right)\]

\[\text { Let } x + iy = \sqrt{- 3 - 4i} . \text { Then }, \]

\[ \Rightarrow \left( x + iy \right)^2 = - 3 - 4i\]

\[ \Rightarrow x^2 - y^2 + 2ixy = - 3 - 4i \]

\[ \Rightarrow x^2 - y^2 = - 3 \text { and } 2xy = - 4 . . . \left( ii \right)\]

\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]

\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 9 + 16 = 25\]

\[ \Rightarrow x^2 + y^2 = 5 . . . \left( iii \right) \]

\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]

\[ \Rightarrow x = \pm 1 \text { and } y = \pm 2\]

\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]

\[ \Rightarrow x = 1, y = - 2 \text { or,} x = - 1, y = 2\]

\[ \Rightarrow x + iy = 1 - 2i \text { or }- 1 + 2i\]

\[ \Rightarrow \sqrt{- 3 - 4i} = \pm \left( 1 - 2i \right)\]

\[\text{ Substituting these values in } \left( i \right), \text { we get }\]

\[ \Rightarrow x = \frac{1 \pm \left( 1 - 2i \right)}{2}\]

\[ \Rightarrow x = 1 - i, i\]

\[\text { So, the roots of the given quadratic equation are 1 - i and } i .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.2 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.2 | Q 2.08 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3x + 9 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + x + 1 = 0


\[x^2 + 2x + 5 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×