English

5 X 2 − 6 X + 2 = 0 - Mathematics

Advertisements
Advertisements

Question

\[5 x^2 - 6x + 2 = 0\]

Solution

Given:

\[5 x^2 - 6x + 2 = 0\]

  Comparing the given equation with general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get 
\[a = 5, b = - 6\] and \[c = 2\].
Substituting these values in
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] ,we get: 
\[\alpha = \frac{6 + \sqrt{36 - 4 \times 5 \times 2}}{2 \times 5}\] and \[\beta = \frac{6 - \sqrt{36 - 4 \times 2 \times 5}}{2 \times 5}\]
\[\Rightarrow \alpha = \frac{6 + \sqrt{- 4}}{10}\]     and   \[\beta = \frac{6 - \sqrt{- 4}}{10}\]
\[\Rightarrow \alpha = \frac{6 + \sqrt{4 i^2}}{10}\] and \[\beta = \frac{6 - \sqrt{4 i^2}}{10}\]
\[\Rightarrow \alpha = \frac{6 + 2i}{10}\]  and     \[\beta = \frac{6 - 2i}{10}\]
\[\Rightarrow \alpha = \frac{2 ( 3 + i)}{10}\] and \[\beta = \frac{2 ( 3 - i)}{10}\]
\[\Rightarrow \alpha = \frac{3}{5} + \frac{1}{5}i\]  and    \[\beta = \frac{3}{5} - \frac{1}{5}i\]
Hence, the roots of the equation are \[\frac{3}{5} \pm \frac{1}{5}i .\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.1 | Q 9 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + x + 1 = 0


\[x^2 - 4x + 7 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×