English

2 X 2 + X + 1 = 0 - Mathematics

Advertisements
Advertisements

Question

\[2 x^2 + x + 1 = 0\]

Solution

Given:   

\[2 x^2 + x + 1 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get
\[a = 2, b = 1\] and \[c = 1\].
Substituting these values in 
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] ,we get:
\[\alpha = \frac{- 1 + \sqrt{1 - 4 \times 2 \times 1}}{2 \times 2}\] and \[\beta = \frac{- 1 - \sqrt{1 - 4 \times 2 \times 1}}{2 \times 2}\]
\[\Rightarrow \alpha = \frac{- 1 + \sqrt{- 7}}{4}\]    and     \[\beta = \frac{- 1 - \sqrt{- 7}}{4}\]
\[\Rightarrow \alpha = \frac{- 1 + i\sqrt{7}}{4}\]   and   \[\beta = \frac{- 1 - i\sqrt{7}}{4}\]
\[\Rightarrow \alpha = - \frac{1}{4} + \frac{\sqrt{7}}{4}i\]  and   \[\beta = - \frac{1}{4} - \frac{\sqrt{7}}{4}i\]
Hence, the roots of the equation are \[\frac{- 1 \pm i\sqrt{7}}{4}\] .
shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.1 | Q 19 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


9x2 + 4 = 0


4x2 − 12x + 25 = 0


\[4 x^2 + 1 = 0\]


\[x^2 - 4x + 7 = 0\]


\[x^2 + 2x + 5 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[x^2 + x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×