English

Solve the Following Quadratic Equation: I X 2 − 4 X − 4 I = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]

Solution

\[ i x^2 - 4x - 4i = 0\]

\[ \Rightarrow i\left( x^2 + 4ix - 4 \right) = 0\]

\[ \Rightarrow \left( x^2 + 4ix - 4 \right) = 0\]

\[ \Rightarrow \left( x + 2i \right)^2 = 0\]

\[ \Rightarrow x + 2i = 0\]

\[ \Rightarrow x = - 2i\]

\[\text { So, the roots of the given quadratic equation are - 2i and } - 2i .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.2 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.2 | Q 2.05 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


x2 + 1 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[x^2 - x + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[- x^2 + x - 2 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×