Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
उत्तर
\[ i x^2 - 4x - 4i = 0\]
\[ \Rightarrow i\left( x^2 + 4ix - 4 \right) = 0\]
\[ \Rightarrow \left( x^2 + 4ix - 4 \right) = 0\]
\[ \Rightarrow \left( x + 2i \right)^2 = 0\]
\[ \Rightarrow x + 2i = 0\]
\[ \Rightarrow x = - 2i\]
\[\text { So, the roots of the given quadratic equation are - 2i and } - 2i .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 9 = 0
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
Solve the equation 21x2 – 28x + 10 = 0
9x2 + 4 = 0
\[x^2 - 4x + 7 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[2 x^2 + x + 1 = 0\]
\[- x^2 + x - 2 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
The number of solutions of `x^2 + |x - 1| = 1` is ______.
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.