मराठी

17 X 2 + 28 X + 12 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[17 x^2 + 28x + 12 = 0\]

उत्तर

Given: 

\[17 x^2 + 28x + 12 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get
\[a = 17, b = 28\] and \[c = 12\]
Substituting these values in \[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] , we get: 
\[\alpha = \frac{- 28 + \sqrt{784 - 4 \times 17 \times 12}}{34}\]  and   \[\beta = \frac{- 28 - \sqrt{784 - 4 \times 17 \times 12}}{34}\]
\[\Rightarrow \alpha = \frac{- 28 + \sqrt{784 - 816}}{34}\] and  \[\beta = \frac{- 28 - \sqrt{784 - 816}}{34}\]
\[\Rightarrow \alpha = \frac{- 28 + \sqrt{- 32}}{34}\] and \[\beta = \frac{- 28 - \sqrt{- 32}}{34}\]
\[\Rightarrow \alpha = \frac{- 28 + \sqrt{32 i^2}}{34}\]    and \[\beta = \frac{- 28 - \sqrt{32 i^2}}{34}\]
\[\Rightarrow \alpha = \frac{- 28 + 4\sqrt{2} i}{34}\]  and \[\beta = \frac{- 28 - 4\sqrt{2} i}{34}\]
\[\Rightarrow \alpha = \frac{- 14 + 2\sqrt{2} i}{17}\]   and   \[\beta = \frac{- 14 - 2\sqrt{2} i}{17}\]
Hence, the roots of the equation are \[- \frac{14}{17} \pm \frac{2\sqrt{2}}{17}i .\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.1 | Q 15 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


x2 + x + 1 = 0


\[2 x^2 + x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×