Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
उत्तर
\[ 2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]
\[a = 2, b = - \left( 3 + 7i \right) \text { and } c = \left( 9i - 3 \right)\]
\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]
\[ \Rightarrow x = \frac{\left( 3 + 7i \right) \pm \sqrt{\left( 3 + 7i \right)^2 - 8\left( 9i - 3 \right)}}{4}\]
\[ \Rightarrow x = \frac{\left( 3 + 7i \right) \pm \sqrt{- 16 - 30i}}{4} . . . \left( i \right)\]
\[\text { Let } x + iy = \sqrt{- 16 - 30i} . \text { Then }, \]
\[ \Rightarrow \left( x + iy \right)^2 = - 16 - 30i\]
\[ \Rightarrow x^2 - y^2 + 2ixy = - 16 - 30i \]
\[ \Rightarrow x^2 - y^2 = - 16 \text { and } 2xy = - 30 . . . \left( ii \right)\]
\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]
\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 256 + 900 = 1156\]
\[ \Rightarrow x^2 + y^2 = 34 . . . \left( iii \right) \]
\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]
\[ \Rightarrow x = \pm 3 \text { and } y = \pm 5\]
\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]
\[ \Rightarrow x = - 3, y = 5 \text { or, } x = 3, y = - 5\]
\[ \Rightarrow x + iy = 3 - 5 i \text { or }, - 3 + 5 i\]
\[ \Rightarrow \sqrt{14 - 8\sqrt{2}i} = \pm \left( 3 - 5 i \right)\]
\[\text { Substituting these values in } \left( i \right), \text { we get }\]
\[ \Rightarrow x = \frac{\left( 3 + 7i \right) \pm \left( 3 - 5 i \right)}{4}\]
\[ \Rightarrow x = \frac{3 + i}{2}, 3i\]
\[\text { So, the roots of the given quadratic equation are } \frac{3 + i}{2} \text { and } 3i .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation x2 + 3x + 9 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `x^2 + x + 1/sqrt2 = 0`
Solve the equation 21x2 – 28x + 10 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
9x2 + 4 = 0
4x2 − 12x + 25 = 0
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.