मराठी

Solve the Following Quadratic Equation: 2 X 2 − ( 3 + 7 I ) X + ( 9 I − 3 ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]

उत्तर

\[ 2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]

\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]

\[a = 2, b = - \left( 3 + 7i \right) \text { and } c = \left( 9i - 3 \right)\]

\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]

\[ \Rightarrow x = \frac{\left( 3 + 7i \right) \pm \sqrt{\left( 3 + 7i \right)^2 - 8\left( 9i - 3 \right)}}{4}\]

\[ \Rightarrow x = \frac{\left( 3 + 7i \right) \pm \sqrt{- 16 - 30i}}{4} . . . \left( i \right)\]

\[\text { Let } x + iy = \sqrt{- 16 - 30i} . \text { Then }, \]

\[ \Rightarrow \left( x + iy \right)^2 = - 16 - 30i\]

\[ \Rightarrow x^2 - y^2 + 2ixy = - 16 - 30i \]

\[ \Rightarrow x^2 - y^2 = - 16 \text { and } 2xy = - 30 . . . \left( ii \right)\]

\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]

\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 256 + 900 = 1156\]

\[ \Rightarrow x^2 + y^2 = 34 . . . \left( iii \right) \]

\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]

\[ \Rightarrow x = \pm 3 \text { and } y = \pm 5\]

\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]

\[ \Rightarrow x = - 3, y = 5 \text { or, } x = 3, y = - 5\]

\[ \Rightarrow x + iy = 3 - 5 i \text { or }, - 3 + 5 i\]

\[ \Rightarrow \sqrt{14 - 8\sqrt{2}i} = \pm \left( 3 - 5 i \right)\]

\[\text { Substituting these values in } \left( i \right), \text { we get }\]

\[ \Rightarrow x = \frac{\left( 3 + 7i \right) \pm \left( 3 - 5 i \right)}{4}\]

\[ \Rightarrow x = \frac{3 + i}{2}, 3i\]

\[\text { So, the roots of the given quadratic equation are } \frac{3 + i}{2} \text { and } 3i .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.2 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.2 | Q 2.12 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


9x2 + 4 = 0


4x2 − 12x + 25 = 0


\[x^2 - x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×