Advertisements
Advertisements
प्रश्न
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
उत्तर
Given equation:
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
Comparing the given equation with the general form of the quadratic equation
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation 2x2 + x + 1 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
Solve the equation 21x2 – 28x + 10 = 0
9x2 + 4 = 0
\[4 x^2 + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.