मराठी

17 X 2 − 8 X + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[17 x^2 - 8x + 1 = 0\]

उत्तर

Given:    

\[17 x^2 - 8x + 1 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get
\[a = 17, b = - 8\] and \[c = 1\] .
Substituting these values in  
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] , we get:
\[\alpha = \frac{8 + \sqrt{64 - 4 \times 17 \times 1}}{2 \times 17}\] and   \[\beta = \frac{8 - \sqrt{64 - 4 \times 17 \times 1}}{2 \times 17}\]
\[\Rightarrow \alpha = \frac{8 + \sqrt{64 - 68}}{34}\] and \[\beta = \frac{8 - \sqrt{64 - 68}}{34}\]
\[\Rightarrow \alpha = \frac{8 + \sqrt{- 4}}{34}\] and \[\beta = \frac{8 - \sqrt{- 4}}{34}\]
\[\Rightarrow \alpha = \frac{8 + \sqrt{4 i^2}}{34}\] and \[\beta = \frac{8 - \sqrt{4 i^2}}{34}\]
\[\Rightarrow \alpha = \frac{8 + 2i}{34}\]  and \[\beta = \frac{8 - 2i}{34}\]
\[\Rightarrow \alpha = \frac{4 + i}{17}\]   and \[\beta = \frac{4 - i}{17}\]
\[\Rightarrow \alpha = \frac{4}{17} + \frac{1}{17}i\]  and   \[\beta = \frac{4}{17} - \frac{1}{17}i\]
Hence, the roots of the equation are \[\frac{4}{17} \pm \frac{1}{17}i\].
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.1 | Q 13 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation –x2 + x – 2 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 21x2 – 28x + 10 = 0


9x2 + 4 = 0


x2 + x + 1 = 0


\[x^2 - 4x + 7 = 0\]


\[x^2 + 2x + 5 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[x^2 - x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×