मराठी

27 X 2 − 10 + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[27 x^2 - 10 + 1 = 0\]

उत्तर

Given: 

\[27 x^2 - 10x + 1 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get
\[a = 27, b = - 10\] and \[c = 1\] .
Substituting these values in
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\],we get:
\[\alpha = \frac{10 + \sqrt{100 - 4 \times 27 \times 1}}{2 \times 27}\] and \[\beta = \frac{10 - \sqrt{100 - 4 \times 27 \times 1}}{2 \times 27}\]
\[\Rightarrow \alpha = \frac{10 + \sqrt{100 - 108}}{54}\]   and   \[\beta = \frac{10 - \sqrt{100 - 108}}{54}\]
\[\Rightarrow \alpha = \frac{10 + \sqrt{- 8}}{54}\]  and  \[\beta = \frac{10 - \sqrt{- 8}}{54}\]
\[\Rightarrow \alpha = \frac{10 + \sqrt{8 i^2}}{54}\] and \[\beta = \frac{10 - \sqrt{8 i^2}}{54}\]
\[\Rightarrow \alpha = \frac{10 + i2\sqrt{2}}{54}\] and   \[\beta = \frac{10 - i2\sqrt{2}}{54}\]
\[\Rightarrow \alpha = \frac{2(5 + i\sqrt{2})}{54}\]    and \[\beta = \frac{2(5 - i\sqrt{2})}{54}\]
\[\Rightarrow \alpha = \frac{5}{27} + \frac{\sqrt{2}}{27}i\] and \[\beta = \frac{5}{27} - \frac{\sqrt{2}}{27}i\]
Hence, the roots of the equation are 
\[\frac{5}{27} \pm \frac{\sqrt{2}}{27}i\] .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.1 | Q 14 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation 2x2 + x + 1 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


x2 + 2x + 5 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×