Advertisements
Advertisements
प्रश्न
\[27 x^2 - 10 + 1 = 0\]
उत्तर
Given:
\[27 x^2 - 10x + 1 = 0\]
Comparing the given equation with the general form of the quadratic equation
APPEARS IN
संबंधित प्रश्न
Solve the equation 2x2 + x + 1 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
x2 + 2x + 5 = 0
\[4 x^2 + 1 = 0\]
\[x^2 + 2x + 5 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.